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NASA Relevance:
• Software architecture for real-time autonomous systems is key to 

robust autonomous planetary explorers (Mars Exploration, Europa 
Lander, Titan aerobot)

• Distributed nature of architecture supports multi-spacecraft missions 
(earth observing, formation flying interferometry) 

• Potentially usable as well-founded fault-protection engine in 
traditional flight software

Accomplishments to date:
• Full implementation of IDEA architecture
• Identified basic services that are planning technology independent
• Several multi/single agent applications programmed in IDEA

• Planner and Executive layers for Remote Agent
• DS1 launch sequence
• K9 on board rover controller
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Problem: Advanced autonomous agents are traditionally multi-
layered with each layer using different technology with different 
semantics. This increases software integration and validation costs.

Objectives:
• Simplify an autonomous agent architecture by using the same 

execution machinery (semantics and implementation) at any layer
• Simplify the integration of autonomous agent software by using a

single communication protocol between all layers

Key Innovation:
• IDEA virtual machine implementing a sense-plan-act loop with real-

time guarantees
• Use of a reactive model-based planner in the inner loop of 

execution, with each IDEA agent possibly using a different planner 
technology provided it is compatible with the IDEA virtual machine

• IDEA communication protocol consisting of the interchange of task 
networks

Description/Schedule
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• IDEA is inspired by the Remote 
Agent architecture that flew on DS1

• IDEA agent: responsible for 
decision at a given level of 
abstraction and/or in charge of a 
subset of the spacecraft sub-systems

• IDEA agent relay allow: “legacy” software to interact with IDEA 
agents by supporting the IDEA communication protocol. 

•FY 03:theoretical paper on IDEA computational model, reference 
implementation ready for distribution, completion of current 
reference application (Remote Agent)

•FY 04: mapping between procedural execution and IDEA 
computational model, IDEA agent applications with different 
planning technologies; translators/analyzers between different 
procedural execution/planning paradigms and IDEA (in both 
directions)
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Problems with Large Scale Autonomy 
Systems

• Difficulty in programming
– Each subsystem has a distinct “virtual machine” and method 

of programming
– A domain specialist needs help from reasoning engine 

specialists to program something like Remote Agent

• Difficulty in validation
– At times information needs to be duplicated at different levels
– Different encoding makes validation difficult, e.g., it is not easy 

to envision a unified approach to validation applicable to all 
levels

• Lack of uniformity with flight software
– Autonomy seen as disposable add on
– What about flight software fault protection?
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Fundamental IDEA Hypothesis

• The only coordination mechanism needed in a 
complex control system is:
– An explicit representation of a plan in a plan 

database
– An interpreter that integrates sensor information 

and goals in the plan database and starts new tasks
– A planner based on sub-goaling (and constraint 

propagation)

• This is true at any level of abstraction

Intelligent Distributed Execution Architecture (IDEA)
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“ Now, wait a minute …”

Shakey the robot
1966-1972

Behavior-based robots
1986
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Traditional Arguments against Planning

• Some truths
– Combine simple reactive controllers to build complete 

autonomous systems
– Focus on reactivity, i.e., the ability to keep up with a dynamic

world
– Minimally constraining architectural assumptions. Design 

behaviors internally as most fit to task.
– Keep architecture “light weight”.

• Some nonsense
– "The world is its own best model.“

• Some problems with the alternative
– Approaches to programming Artificial Insects have not scaled 

up to higher cognitive functionalities
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Building control systems as 
communicating agents

• Complex control systems designed as networks of 
interacting agents

• Each agent displays all functionalities found in Remote 
Agent: planning, execution, diagnosis, resource 
management.

• All agents will use a uniform, declarative communication 
protocol

Agent1

Agent2

Agent3

Control Agenti
Plans
Execute

Diagnose
Manages Resources
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Multi-agent perspective
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Method of Investigation

• Theoretical architectural hypothesis 
formulation

• System architecture services implementation
• Application to non-trivial domains



Ames
Research
Center

New Theoretical Insights

• Reactive behavior depends on the state of the reactive planner 
during the reaction cycle
– Model this explicitly as internal timelines

• Every return value has an associated communication flag
– Under “reliable and instantaneous communication” hypothesis, allows to 

explicitly model response to “too slow” failure state of other control 
agents

• “Latency matching” in multi-latency control systems
– Determines how much look-ahead is needed from controlling agent to 

correctly control a controlled agent
– Needed for studying “stability” of multi-agent system (“Under which 

conditions can a controller keep up with a controlled system?”)
• IDEA is a model of a hybrid synchronous/asynchronous 

control/computational system
– Possibility of deep connections with formal models approaches to same 

problem
– This is currently at the frontier of what is known in the field of formal 

models for distributed systems  
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Advances in architeture services

• Plan Service Layer (PSL)
– API providing “glue” between plan runner and plan database/planner
– Implemented services to ensure that a constraint-based planner (EUROPA 

based) always operate consistently with execution information
– Ready to generalize PSL to connect with much wider range of planners

• Non-timeline based temporal planners (Kirk)
• Contingent planners (Dave Smith)
• Repair-based planners (ASPEN)
• Non-temporal planners
• Diagnosis and reconfiguration engines (L2, Titan)

• Agent Relay design
– Independent from “message-level layer”
– Two implementations: CORBA and Reid Simmon’s IPC
– Does not assume that recipient or sender is an IDEA agent



Ames
Research
Center

Applications

• Reimplementation of Remote Agent
– Demonstrated interleaving of deliberative planning and execution at 

mission-level (Planner/Plan Runner in Remote Agent)
– Planning to standby at the mission level (model-based solution of ad-hoc 

Executive script in Remote Agent)
– Finishing up System level model (Executive in Remote Agent)

• Coverage of all subsystems in EXEC working nominal behavior and some 
faults

• Preliminary inter-agent Mission/System level communication tests

• PSA
• DS1 launch sequence

– Collaborative work with JPL (Abdullah Aljabri’s group)
• On-board executive for K9 rover

– Summer project by Bernardine Dias (CMU) and Solange Lemai
(LAAS/CNRS)
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K9 Rover

• Pilot

• Obstacle avoidance

• Pantilt

• Vision

• Power

• Fans

• Arm

http://ic-www.arc.nasa.gov/ic/projects/intelligent-robotics/k9/Engineering/index.html
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Implementation of IDEA Model
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Measured latency at execution
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•Reactive planner is chronological backtracker without 
search control heuristics
•Plan database limited to “two tokens” for each timeline
•Dynamic “amnesia”
•Run on 300MHz Pentium in Linux
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Search cost at each cycle

0

5

10

15

20

25

30

0 200 400 600

time (s)

cycle duration

Number of replanning
steps at each cycle



Ames
Research
Center

Future Work

• Produce theoretical paper on IDEA computational framework
• Produce a reference implementation available for distribution
• Extend to interaction between agents at planning time
• Use of different plan database technologies and planners
• Provide fault-protection for flight software application

– DS1 fault protection re-implementation
• Mapping to procedural execution

– Formal mapping from/to  BDI model
– Augmentation/translation with PRS procedural system

• Integration with diagnosis
– Diagnosis = “planning in the past”

• Multi-agent fault-tolerance
– What happens if an agent in the control network must go off line (e.g., it 

does not respect a latency guarantee)?
• Look at connection with other areas

– Real-Time Active Database transaction management 


